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PREFACE 

This document is based on a thesis submitted by the author to the Faculty of 
The George Washington University, School of Engineering and Applied Science. 
It isfelt that the scope of the subjectmatter and its application to high-frequency 
communication systems studies warrants further publication and distribution by 
NASA/GSFC above that afforded by the recipient University. 
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- 0  ABSTRACT -5033- 
The output frequency spectrum of a diode frequency converter, or ~nixcr,  

will contain sum and difference frequencies of the applied signal and local oscil- 
lator and their harmonics. In addition, these newly created frequencies will beat 
with each other and with the originally applied signals to create still more ire- 
quencies, and the process continues indefinitely. Advance knowledge of the lo- 
cation of the undesired frequencies is important to the design and performance 
characteristics of the converter, and to the sensitivity and filtering requirements 
of the receiver system. 

This paper presents the output power spectraldensity of the diode frequency 
converter when subjected to deterministic, statistical, and mixed inputs by ap- 
plication of the Wiener-Khintchine Theorem to the autocorrelation function of the 
diode output current. The converter output a u t o c o r r e 1 a t  i o n  function for the 
general signal plus noise case and for particular signal inputs is presented in 
terms of thediode conductance constants and the statistical moments of the input 
signal. 

All  of the autocorrelation andpower spectra functions developed in this paper 
are expressed in series form to permit a useful analysis of the contributions of 
the diode conductance constants to each term. From these spectral displays, the 
optimum diode characteristic for efficient frequency conversion can be generated 
and the filtering and power requirements of the converter determined. 
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THE OUTPUT AUTOCORRELATION FUNCTION 
AND POWER SPECTRAL DENSITY 

OF A DIODE FREQUENCY CONVERTER 

1. INTRODUCTION -. 
Frequency conversion, o r  mixing, may be broadly defined 3s the conversion 

of a signal from one frequency band to another by combining it with a local os- 
cillator voltage in a non-linear device. In a microwave communications system 
the frequency converter is utilized to convert the high-Ii-equency received sigpd 
to a lower intermediate frequency where frequency selective operations s u c h  as 
amplification o r  detection may be more readily accomplished. 

. 4  

The essential part of the frequency converter consists of a device whose 
impedance to the high-frequency signal input is a non-linear function of the ap- 
plied voltage. If the appl id  voltage includes the signal and a sinusoidal 'beating', 
or  local oscillator, the output of the device will contain new frequencies gener- 
ated by the non-linear impedance. The desired output frequency band, usually 
the difference of the local oscillator and signal frequencies, is then chosen by a 
suitable frequency selection o r  filtering network at the converter output. 

The relatively recent extension of communications systems to the upper 
microwave and lower millimeter wavelength portion of the electrom'agnetic 
spectrum has produced an added importance on the techniques for achieving 
frequency conversion. The extremely high frequencies involvcxl prevent the use 
of vacuum tubes as converters because of the losses produced from electron 
transit-time effects. The point contact semiconductor diode, where electrode 
spacing is on the order of atomic dimensions, has been found suitable a s  a non- 
linear element in the microwave frequency range. With the utilization of very 
small contact points and careful packaging and matching techniques, the semi- 
conductor diode has proved superior to other methods of frequency conversion, 
and it is now in general use in microwave systems. 

In this paper the output spectra of a microwave diode frequency converter 
subjected to deterministic and random input signals will be investigated. The 
term 'frequency converter', rather than 'mixer', is used here to stress the fact 
that this analysis is not limited to devices which translate the high-frequency 
input spectrum to a much lower intermediate frequency band, (say 30 o r  100 
Megacycles), but includes devices where the desired output spectrum may 
occupy a frequency band close to that of the input spectrum. The term mixer 
is usually associated with the former type of device, while the term frequency 
converter more accurately describes the latter. 

1 



1.1 SCOPE OF STUDY 

I 

The output spectrum of the diode frequency converter before preselection or 
filtering of the desired output frequencies will contain sum and difference fre- 
quencies of the applied signals and their harmonics. In addition, these newly 
created frequencies will beat with each other and with the  originally xpplied 
signals to create still more frequencies, and the process continues indefinitely. 
Advance knowledge of the location of the undesired frequencies is important to 
the design and performance characteristics of the converter, and to the sensi- 
tivity and filtering requirements of the receiver system. 

The output frequency spectrum of a converter subjected to an input signnl 
which possesses completely deterministic characteristics can be predicted by a 
general analysis of the intermodulation products of the output current of the 
device '. When the input signal is of a statistical or  random nature, which is the 
prevalent condition in communications systems, the output spectrum is not di- 
rectly available and the methods of statistical communications theory must be 
appealed to. The necessity of a statistics! approach arises because it is usually 
impossible to specify the properties of the information bearing signal and the 
equally important noise that is present to sufficient accuracy without recourse 
to a probabilistic description of these processes. 

This paper develops the output power spectral density of the diode frequency 
converter subjected to deterministic, random, and mixed inputs by apl>lic a t' ion 
of the Wiener-Khintchinc Theorem to the autocorrclation function of the diode 
output current. The general output autocorrclation function is prescntcd in 
terms of the diode conductance constants and thc moments of the input signal. 
The output statistics of the converter for particular inputs is also investigated 
and their output spectra displayed. 

The paper is divided into eight sections. In Section 2 the mathematical 
preliminaries required for the analysis are summarized and results tabulated for 
later reference. InSection 3, the output current for the diode is derived by a 
Taylor Series analysis similar to Orloff1s2. Section 4 derives the general output 
autocorrelation function for the converter in terms of the statistical moments of 
the input and the diode conductance constants. 

In Section 5 the statistical properties of the signal plus noise input are dis- 
cussed and the general output autocorrelation function for the signal plus noise 
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input is derived. The final three sections present solutions for particular de- 
terministic and random inputs to the converter. In Section 6 the output power 
spectra for a cosine and a cosine plus narrowband noise input are presented. 
In Sections 7 and 8, results for amplitude and angle modulated carrier inputs 
are derived and their output spectra indicated. - .  

Every attempt was made in this analysis to keep the resulting functions and 
expressions in a form which would allow a minimum amount of manipulation to 
obtain autocorrelation and power spectra directly. The basic approach guiding 
the analysis was to reduce the general autocorrelation function for the converter 
output current, R, ( r ) ,  to a series of relatively simple functions of 7 so that the 
resulting spectral contributions of each term were  immediately available. This 
reduction was found to be most readily accomplished by expressing R, (7) in 
terms of the joint mixed moments of the input signal process, rather than in 
terms of a Bessel function factorization as done by Middleton3, o r  in terms of 
contour integrals of the input characteristic function, as done by Davenport and 
Root4. Shutterly derives series expressions for the output autocorrelatios of 
the general non-linear device, but evaluation of h is  constants, requiring summa- 
tion over five running integers, is unwieldy for all but the simplest of non-linear 
devices5. 

$ 8  

The determination of the output statistics of the frequency converter when 
subjected to a cosine plus narrowband Gaussian noise input is included because 
it represents the most useful input for communications systems studies. As 
described in Sections 7 and 8, this input can be used to represent both the ampli- 
tude and the angle modulated cosine wave when subjected to a narrowband 
Gaussian modulating voltage. 

3(REF. 7,  Section 5.1). 

4(REF. 3, Section 13.3). 

'(REF. 12, Eqs. 38 and 66). 
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2. MATHEMATICAL PRELIMINARIES 

This section summarizes some of the important mathematical and statistical 
concepts which will be utilized in the analysis of the succeeding sections, and in- 
dicates the nomenclature that will be followed in the text. 

2.1 PROBABILITY DISTRIBUTIONS 

The mathematical description of a random or  stochastic process rests on 
the representation of the random mechanism as a set or ensemble of possible 
events possessing properties of statistical regularity. Consider a real, single 
random variable, x,  the sample function of a random process, which has the 
range of values - 5 x 5 + ( I , .  The probability that x is less th'm o r  equal to X, 
a particular value in the range of X, is the probability distribution function of X, 

written as P ( x 5 X) . The extremal values of the probability distribution function 
are; P (  x 5 -") 
tion and everywhere continuous as x -* + w. 

0, and P (  x - < +a)) = 1, and it is a non-decreasing point func- 

The probability density function, p (x), is defined as the derivitive of the 
probability distribution function 

or 

From the extremal values of P ( x 5 X) it is apparent that 

1 

and since P(x 5 X) is a non-decreasing function, p(x) is always 2 0. 

(2-3) 

Any real function y = g (x) , of the real random variable x is itself a ran- 
dom variable with its own probability measures. The above functions can be 
extended to cover complex functions and are applicable to discrete, continuous, 
or  mixed distributions. Consider now two random variables, x and y, which may 
be two separate one-dimentionalvariatesor the components of the same sample 
space. For either condition a joint probability distribution can be defined by 
P ( x 5 X,  y 5 Y )  , which represents the probability that the random variable x 
is less than o r  equal to a specified value X, and that y is less than or equal to 
the specified value Y. 

5 



or  

The joint probability density function is the second mixed partial derivative, 

0 = 
P(X9 Y) :- ox 2y P ( x  5 x, y I Y) 

A s  in the one-dimensional case, 

(2-5) 

2.2 TIME A N D  STATISTICAL AVERAGES 

The time average of a sample function, x ( t  ), of a random process is 

if the limit exists. 

The statistical or  ensemble average or expectation value of the sample 
function is 

r t m  

where x t  refers to the possible values of x ( t  ) which c,m be assumed at the 
time t , and p ( x t  ) is the probability density function associated with x ( t ). 

For an ergodic process, the time average equals the statistical average, 
with probability one. All of the random processes considered in this paper, 
whether due to random fluctuation noise or to random signals, will be assumed 
to possess the conditions necessary for ergodicity. 

The nth moment of the probability distribution of x ( t ) is 

I -  

% *  

* -  

m ‘  



I 

The nth central moment is 

E [(x - x ) ” ]  (x - X)” p(x) d x  (2-9) 

-. 
where X is the mean value of x, E I X I  . 

- !  
A very important expectation value in statistical communication theory is 

the characteristic function of the probability distribution of x ( t  X defined as 

The inverse Fourier Transform of M x  ( j t) is 

(2-11) 
J -in 

The nth moment of x ( t ) can be generated from its characteristic function 
bY s 

(2-12) 

The abuve definitions can be extended to the case of multiple random vari- 
ables by a suitable extension of the time and statistical average concepts. The 
joint moments of the joint probability distribution of the random variables x nnd 
Y a r e  defined as 

E [x” Yk] x ” y k  p(x, y) d x  cly (2-13) 

The joint characteristic function is defined as 

7 



The joint characteristic function is the two-dimensional Fourier transform 
of the joint probability density function, i.e., 

The joint moments of x and y may be obtained from thcir joint characteristic 
function by, 

Two random variables, x and y, are statistically independent when the 
mechanism producing x in no way affects y. The joint moment of two statisti- 
cally independent variables reduces to 

E LxyI E 1x1 E [yI (2-37) 

2.3 CORRELATION FUNCTIONS 

Let x ,  and x 2  be the random variables that refer to the possible values  01 
the sample functions x ( t ) of a given random process at the times t 
respectively. The statistical autocorrelation function for that proccss is defined 
as the expectation value 

and t 2 ,  

The time autocorrelation function of the sample function of a random process 
is defined as 

x ( t )  x * ( t  + r ) d t  
l i m  1 
T 2 T  

J- T 

where ‘r t - t and the asterisk denotes the complex conjug:tte. 

@-2o) 
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If the ensemble remains invariant under an arbitrary linear time shift, the 
process is stationary. For a stationary process, the statistical autocorrelation 
function of that process is a function only of the time difference r .  Therefore 

If the process is ergodic, time and statistical averages are the same, so 

Some random processes are not stationary in the strict scnse, but never- 
theless have invariant mean values and satisfy Eq. (2-21). Such random proc- 
esses are said to be stationary in the wide sense. 

The autocorrelation function of a stationary, real random process is an 
even function of its argument, while the crosscorrellation functions of two such 
processes may or may not be. 

The following five sections will develop the correlation and crosscorrelation 
functions of the particular waveforms necessary for the frequency converter 
analysis. 

Crosscorrelation of Cosines of Different Frequency 

Consider the two cosine waves of constant amplitude and of radian frequen- 
cies and a,, 

The crosscorrelation of f ( t ) and f ( t ) is 

Since 



Since the expectation value of a sinusoid is  zero, 

The Autocorrelation of a Cosine 

Let 

f l ( t )  = f 2 ( t )  = A o c o s  (‘bot -t + )  

Then from Eq. (2-24), the autocorrelation function will  be 

R11(7) = A,2 2 { c o s  ( 2 4  + u o + r )  E [cos 2oiot] 

or 

Crosscorrelation of Cosines of Harmonic Frequency 

Let 

f l ( t )  = A ,  cos ( n w o t  + 4,)  

f ( t )  A, COS ( ( , l o  t f c / ) ~ )  

where n is any integer > 1 .  

1 0 

(2-26) 



Then w i  nwo and 'd2 in Eq. (2-23), and Eq, (2-24) becomes 

Since the expectation value of a sinusoid ih zero, 

The Autocorrelation of a Cosine with Random Envelope and Phase 

Let 

f ( t )  A ( t )  cos [ w o t  + +( t ) ]  

where A ( t  ) and 4 ( t ) are ergodic, statistically independent random or mixed 
processes with +( t ) uniformly distributed over 0 277. 

The autocorrelation of f ( t  ) is therefore, 

R f ( 7 )  = E ( f ( t )  f *  ( t  -I , f ) }  

11 



The properties of ( t ) must be further specified to determine the expecta- 
tion value above. This is accomplished in Section 8.1 for the case of an angle 
modulated cosine wave. 

The Autocorrelation of Narrowband Noise 

Consider the band of I'white" noise centered at a frequency f cps, having 
a bandwidth of b cps and a power spectral density of a. watts/cps across the 
band. The two-sided spectrum representation, shown in Figure 2-1 (a), is 

0 ;  ( f t f , I  ' T  b (2-31) 

The autocorrelation function is given by 

Re-arranging terms 

12 



or 
b 
2 

271 - ‘I 

s i n  2n-7 
R ( r )  2 a , b  b COS 271 f;r (2-32) 

2 
s i n  x 

This function is n cosine wave at frequency f ,, with :L 7 envelope, and 

is shown in Figure 2-1@). The autocorrelation function appro:tchcs zero for 
large values of 7 , and has the value 2nob at ‘1 .* 0 .  

I ,  I ,  
For f ,, - 0, corresponding to a low-pass band of frcqucncies - 2 f .’ - 2 ’  

the carrier term in R ( 7  ) disappears, and 
b 
2 s i n  271 - 7 

b 
2 

R ( T )  = aob 
2 n - 7  

b b 

. (2-33) 

Figure 2-1. Autocorrelation Function of Narmwband White Noise 

t 



2.4 POWER SPECTRAL DENSITY 

The total power associated with the random variable x ( t ) is the time 
average of the total energy in 

p x  - 

The t ime autocorrelation function for x ( t ) is, from Eq. (2-20), 

For 7 = 0, 

or  

The Fourier transform of R x  ( 7 )  is defined as 

6 where Sx ( f ) is called the power spectral density . 
The inverse Fourier transform of the above equation is 

(2-34) 

6Sx(f) h a s  been termed the power d e n s i t y  spectrum ( b y  Idee), or the in tens i ty  slx.ctrum (Oy 
Middleton), or s imply  the power spectrum (by Schwilrtz).  'Ihe term p w c r  slwctriim w i l l  occ;isioii- 

a l l y  b e  used  here  to refer to the graphical  reprcsetltiltion of S x ( f )  as a function of frequency. 

14 
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For 7 = 0 ,  

- .  ~ 

- 1  

(2-35) 

The above relationship, which establishes the autocorrelation function and 
the power spectral density of a random function as a Fourier transform pair, is 
known as the Wiener-Khintchine Theorem for autocorrelation. 

The autocorrelation function for a periodic function is periodic and the 
power spectral density is discrete. For a random function, the autocorrelation 
function is aperiodic and the power spectral density is continuous, with power 
contributed by a continuous band of frequencies. 

The two-sided W-K transform is written as 

+ m  
R x ( 7 )  - - [zx(f) e J a n f T  d f  

(2-36) 

Since Rx (7 ) is real and an even function, Sx ( f ) is likewise real and even, 
therefore the transform pair can be expressed as a pair of cosine transforms, 

The two-sided form of the transform pair, although introducing physically 
non-existant negative frequencies, is often useful because it allows the expres- 
sion of series and integrals in exponential form, which may be easier to mani- 
pulate mathematically. 



The two sections to follow will develop the power spectral density of a 
constant and a cosine wave from their respective autocorrelation functions, 
which are necessary for the converter analysis. 

Power Spectral Density of a Constant 

From Eq. (2-37) (b), 

A s  expected 

S x ( f )  = AO2 6 ( f  -0) (2-38) 

where 6 ( x )  i s  the Dirac Delta Function. 

Power Spectral Density of a Cosine Wave 

then 

From Eq. (2-37) (b), 

Hence 

sx ( f )  4 211 ( f  t- f " )  ' 1  1 COS 27, ( f  - f J  I ] d /  

16 



or 

+ m  

S x y ( f )  - 1.. 
- .  

+ m  

S x ( f )  C J * " ~ ~  d f  R ( , I )  c1.1 I.. Y 

A: - [ h  ( f  - f , )  + b ( f  + f O ) ]  4 S x ( f )  42-39] 

Each spectral 'line' of Sx ( f ) has a magnitude of AO2/4, hence the total in- 

tensity is, as expected, e q d  to A,2/2. 

2.5 PRODUCT TRANSFORMS AND CONVOLUTION 

The determination of the power spectral density of the frcquency converter 
from its autocorrelation function will involve the Fourier transformation of 
terms of the form F [R, ( 7 ) R y ( 7  )I and F[Rz(r)] . The resulting spectrum for 
these terms can be determined by application of the convolution integral of two 
functions 

where the asterisk denotes a convolution. 

For the two independent random variables x and Y, with autocorrehtions 
of Rx (7 ) and RY (7 respectively, the spectral density of their product is given 
bY 9 

Since 

+ m  

R x ( 7 )  [ S x ( f )  e J Z n f 7  d f  
J- m 

The refore 

17 



Then let 

where the new dummy variable 5 has been introduced to avoid possible confusion. 

Hence 

Since 

therefore 

Comparing this equation with Eq. (2-40) gives, 

S x y ( f )  - S X ( f >  * S y ( f )  

or 

F [Rx  ( 7 )  RY ( 7 1 3  F [Rx ( T ) ]  * F [R, ( 7 ) ]  

Extending the same approach, it can be shown that 

(2-42) 

(2-43) 

18 



or  

- 1  

n 
where * denotes n-fold self-convolutions. 

The first three self-convolutions of the power spectrum of a cosine wave, 
v ( t )  - Ac cos ( # i s .  t ,  are  shown in Figure 2-2, and the convolutions of the spectra 
of two cosine waves at f (. and f ,, are shown in Figure 2-3. 

The multiple convolution of the rectangular spectra of uniformly distributed 
narrowband noise, pictured in Figure 2-1 (a), is required for Uie converter 
analysis. The n n  self-convolution of a rectangular distribution of the form, 

is given by7, 

n 
where ( ) denotes j < x < n, and the summation is continued as long as X, 

(X - I ) ,  ( x  - 2) ,  . . . are  positive. 

The first three convolutions of the rectangular low-pass spectrum of band- 
width b and height a. are shown in Figure 2-4(a), and the first  three convolu- 
tions of the rectangular spectrum centered at ? f are shown in Figure 2-4@). 
As the number of convolutions is increased, the spectra of S( f ) 
rectangle rapidly approaches a Gaussian shape, provided 1) remains finite. 

S( f ) for the 

The convolutions of the power spectra of a sinusoid with the first three self- 
convolutions of the rectangular narrowband noise are shown in Figure 2-5. The 
convolutions of the rectangular spectra with the self-convolutions of the sinusoid 
are shown in Figure 2-6. 

'Cramer, (REF. 2, p. 245).  



- f c  f C  

- 2 f c  0 2 f C  

,1. 128 

- 3 f  
- f C  f C  3 f c  

Figure 2-2. Self-convolution of the Power Spectrum of a Sinusoid 
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3. CONVERTER OUTPUT CURRENT 

The first quantitative theory describing the physical mechanisms of semi- 
conductor rectification was developed independently in 1932 by Wilson, Nordheim, 
and others*, and was based on the quantuh-mechanical 'tunnel' effect. Later 
work by Mott, Schottky, Bethe, and Herzfield led to the development of the diode 
and diffusion theories €or semiconductor barrier behavior9. The fundamental 
relationship predicting the current-voltage characteristic of the variable re- 
sistance semiconductor diode has the form, 

0 
(3- 1 ) 

where i o  ( t  ) is the current through the diode, vd is the voltage applied across 
the barrier,  and I, and u are constants for the particular diode of interest. 

The high-frequency equivalent circuit for a semiconductor diode, which 
takes into account the known physical parameters at the junction, is shown in 
Figure 3-l(a). The circuit consists of a non-linear barrier resistance, R,, , in 
parallel with a barrier capacitance, C, . The equivalent circuit for  the diode 
frequency converter is shown in Figure 3-1@). 

The spreading resistance, r results from the constriction of current flow 
in the semiconductor material near the contact. The magnitude of C,, is depend- 
ent on the applied voltage because the effective thickness of the barrier is n 
function of the applied voltage. This model docs not include the effects of' the 
diode cartridge and mounting configuration losses, which are msumed for the 
analysis to be minimized by proper design techniques. 

The voltage applied to the diode, v, consists of the information-bearing 
signal voltage, s( t ), which may include undesired externil noise components, 
and a sinusoidal local oscillator of the form, 

(3-2) 
- 

V, ( t )  - E, C O S  (11, t 

The voltage across the barr ier  is, 

vd v - i , R s  

* .  

(3-3) 

'Torrey and Whitmer, (REF. 1 5 ,  p. 77) .  

';hid, p. 82. 
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Figure 3-1. High-frequency Equivalent Circuits for (a) The Variable Resistance 
Semiconductor Diode and (b) The Diode Frequency Converter 

where R s  is the sum of the diode spreading rcsislancc :ind my series resistmcc 
from the voltage Fources. 

The exponential term in Eq. (3-1) can be expressed by its power series as, 



The ref or e, 

or 

(3-4) 

where the conductance constants are given by 

Neglecting Rs for the moment, 

m 

(3-5) 

If Rs is not neglected, the expressions for the g k  will be altered. The first 
three conductance constants with Rs included are derived in Appendix I, and are 
given by equations 1-7, 1-8, and 1-9. For most microwave diodes of interest, 
rd >> Rs, and negligible error  will be introduced by neglecting Ry. The validity 
of this assumption is further demonstrated by the calculations for the reprcsenta- 
tive diode in Appendix II. 

The diode current can therefore be expressed as 

For efficient frequency conversion, the so-called 'mixer condition' requires 
that 
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and for microwave receiver converters this is the prevalent condition. The 
diode current, because of the mixer condition, can be expanded in a Taylor 
Series about vo ( t ). 

The Taylor expansion for a function, f (x), about the point x ;1 is, 
I,) 

The diode current, from Eq. (344 ,  is therefore, 

Also 

[v - v o ( t > ] "  = [ s ( t )  + v o ( t )  - v o ( t ) ] "  - -  S" ( t )  

hence, 

11 = 0 

SI1 ( t )  d" 
n !  dtl l  [E k =  1 

(3-8) 

- _  

.- 

The differential term in Eq. (3-8) can be expressed as a summation. I d ,  

Then 

d - [ I ( t ) J  - g ,  ' 2 g 2 v o  + 3 R 3 " " 2  1 . . .  1 k g  v ( k - l )  ' . . .  d t  k O  

28 



LI(t)I  = ... -t k ( k -  1 )  g , ~ , ( ~ - ~ ) +  
d2 

.d t 2  
- ... 

- d“ [ I ( t ) l  ... + k ( k  - 1 )  ... [k - ( n  - 1)J g k v O  (k-11) 1 
d t n  

k ( k - 1 )  ... ( k - n f  1 )  ( k - n )  (k -11-1 )  ... 
- - ... + g ,  V*(k-” )  I ( k  - n )  ( k  - n - 1)  . . . 

- d” k !  
[ I ( t ) l  = ... + g, Vo(k-”) -t . . . d t “  (k  - n )  ! 

Expressed as a series, 

Therefore Eq. (3-8) is, 

n’O k = n  

. .  
Let k - n - P, then k 11 + p, and, 

(3-1  1)  
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Also let 

(3-12) 

Theref ore , 

In order to determine the form of the i o  ( t ) terms, the above series wi l l  be 
expanded out to n = 3 and p 
Eq. (3-4). Therefore, 

3. This corresponds to letting k go to three in 

i o ( t )  I- K ( 0 ,  0 )  + K ( 0 ,  1) COS (’jot + K ( 0 ,  2 )  c o s 2  ‘ l ~ o t  

+ K ( 0 ,  3) cos3 ‘ A J ~ ~  + K ( 1 ,  0) s ( t )  1 K ( 1 ,  1) s ( t )  C O S ‘ L J ~ ~  

-+ K ( 1 ,  2 )  s ( t )  COS’ 01  0 t + K ( 1 ,  3) s ( t )  cos3 ‘(jot 

f K ( 2 ,  0 )  s 2 ( t )  + K ( 2 ,  1) s 2 ( t )  cos w 0 t  (3- 14) 

+ K ( 2 , 2 ) s 2 ( t ) c ~ ~ 2 r ~ O t  + K ( 2 , 3 )  s 2 ( t ) C ~ ~ 3 ~ i ) o t  

f K ( 3 , 0 ) s 3 ( t )  + K ( 3 ,  ~ ) s ~ ( ~ ) c o s ‘ I J ~ ~  

+ K ( 3 ,  2 )  s 3 ( t )  cos2 t f K ( 3 ,  3) s 3 ( t )  <*os3 i t l o  t 

Using the identities, 

cos2 wo t -- 
1 1  
2 2  
- f - cos 2 d 0  t 

30 
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Eq. (3-14) can be expressed as 

i o ( t >  A, + A l o s ( t )  + A,, s 2 ( t )  + A,, s 3 ( t )  

_ -  
+ A,, COS o', t + A,, COS 2(r), t + A,, COS 3('10 t 

* 
+ A,, s ( t >  cosw,,t + A,, s ( t )  cos 2 w , t  

+ A, s ( t )  COS 3(llot + A,, s 2 ( t )  cos c X i O t  

'. A,, S 2 ( t )  COS 2 ( d J o t  1 A, s 2 ( t )  COS 301,t 

+ A,, s3 ( t  ) COS UJ, t + A,, ( t )  COS 2<tlo t 

+ A, s 3 ( t )  COS 3w, t 

~ 

where, 

A,, = [ K ( O ,  1)  3 
g , E ,  + - g  E 3  4 3 0  

(3-15) 

(3- 16) 
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1 
A, = [K(2 ,  0) t ~ K ( 2 ,  211 = g ,  + 3 g 4 E O 2  

(3- 1 6 )  
contd. 



I 
I - .  

In general, therefore, the output current for the diode frequency converter 
will consist of a d.c. term, harmonics of the local oscillator voltage, and product 
terms of the signal and local oscillator. The output current can be expressed in 
series form as, 

t f: AOp cos pw0 t 
p =  1 

(3-17) 

n =  1 

f: A,,p s" ( t )  COS p~~ t 
n ' l  p = l  

The Anp coefficients are functions of the diode conductance const'mls and of 
the local oscillator level, and can be obtained from Eq. (3-16). 
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4. CONVERTER OUTPUT AUTOCORRELATION FUNCTION 

- -  

i 
~ 

i _ _  

- .  

The autocorrelation function for the output current of the Irequency converter 
is given by the expectation value, 

where i o  ( t  ) is defined by Eq. (3-17). Substituting that equation into thc above 
gives, 

R O ( 7 )  - A, + E{2 A,,, A, cos p'jj0 t cos p' ( ~ 1 ~  ( t  1 ) 
p = 1  p"1 

+ E {2 f: AnOAn,o s " ( t )  s" ' ( t  t , r )  1 

+ 2 E { A m  f: 
p =  1 I1 -= 1 

' 2E {Aoo 2 2 Arlp s " ( t )  cos pmo t 
n = l  p ' l  

+ 2 E f Z  f: A O p A n o c o ~ p w o t  s " ( t  + ' r )  \ 
+ 2E {E f: A,Anp, s" ( t )  cos p w o  t cos p ' u ~ ~  ( t  + T )  1 
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The second term in Eq. (4-2) is a cross-correlation of two cosines, which 
is identically zero for all p # p' , (see Eq. 2-25), 'and is of the form 

for all P -' P' , (see Eq. 2-26). 

The fourth term is of the form, 

Since s ( t ) and v o  ( t ) a re  assumed to be statistically independent, the above 
expectation value can be expressed as (see Eq. 2-17), 

I 

E [ SI' ( t  ) SI1'( t f ' I  ) } E { cos prtio t cos plllin ( t  t I ) )  

The abwe expression will  be zero for all p # p', and will be 

E [ SI' ( t  ) s" ( t  + '7 ) } cos p(ljo ' I  

for all p p' . 
The fifth term is zero since, 

I E {cos pol, t } 0 

The seventh and eighth terms :me likewise zero because 

The ninth term is zero for all p # p', and is 

E [ s" ( t  ) }  cos P ' X J ~  7 

for all p p'. 

The tenth term is zero since, 

E { s " ( t )  s " I ( t  + 7 ) )  E {cos pilint} 0 

36 



Introducing the following definition to express the mixed moment terms, 

(b ( 7 )  = E { 
nn' 

_ .  

Eq. (4-2) reduces to, 

m m 

m r n  

(4-3) 

(4-4) 

n = l  p ' l  

n f n' 

m 
r 

Re-arranging the terms of Eq. (4-4) gives, 

W 
1 -  

R 0 ( 7 )  = Am2 +- $ A, 2 cos p q , , ~  

p =  1 

m m 

n = l  p'l  
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contcl 
in 11, 

The equation above expresses the complete output autocorrelation function 
of the frequency converter in terms of the diode constants and the moments of 
the input signal. Once the statistical characteristics of s ( t ) are known and the 
mixed moments are generated, R, ('I ) can be found and the resulting power 
spectral density described. 

The following section will develop the statistical moments for an input con- 
sisting of a signal and additive noise, and will describe the resulting autocorre- 
lation function. 

38 
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5. SIGNAL PLUS NOISE INPUT CONDITION 

For most practical communications systems the input to the frequency con- 
verter can be considered as a mixed statistical process consisting of the additive 
sum of a desired signal voltage, v( t ), and a non-deterministic noise voltage, 
N( t ), Le., 

s ( t )  ~ v ( t )  -I N ( t )  (5- 1) 

The signal voltage consists of a cosine carrier of frequency f amplitude 
o r  angle modulated by a modulating voltage which is in some way proportional 
to the information being transmitted. The noise voltage is assumed to possess 
the fluctuation characteristics of shot and thermal noise, hence its properties 
can be described by the normal (Gaussian) statistical process. 

5.1 STATISTICAL PROPERTIES OF s ( t ) 

The general input voltage to the frequency converter, s ( t ), can be repre- 
sented as 

s ( t )  = A, [l  + a A ( t ) ]  cos [ w c  t + Go + b @ ( t ) ]  + c N ( t )  (5-2) 

The values of the constants, a, b, and C ,  will depend on the type of modula- 
tion present in the transmitted signal and on the presence of noise. For example, 
if the signal consists of noise alone, then a - b 0, and c - 1, so, 

s ( t )  N ( t )  

If s ( t ) is an amplitude modulated wave accompanied by noise, then c' 1 
and b 0, o r  

s ( t )  = A, [ 1 + a A ( t ) ]  COS [(A:, t + < b o ]  + N ( t )  (5-3) 

If s ( t  ) is an angle modulated waveform accompanied by noise, a - 0 'and 
- c - 1, so 

The statistical conditions on v ( t ) , N ( t ), A ( t ), and d l  ( t ) that are assumed 
for  this analysis are summarized below. 

(1) v ( t ) and N ( t ) are __ statistic all^ independent __ and are  at lcast wide _ - _  _.___ sense 
stationary. 
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(2) A ( t ) and +( t ) are slowly varying compared to c o s  t ,  so that v ( t ) 
is narrowband and A ( t ) and C/J ( t ) can be considered as modulation in the usual 
sense. 

(3) A (  t ) and 4 (  t ) may be periodic, entirely random, o r  mixed processes. 

(4) A (  t ) and ( / I (  t ) may be statistically related, o r  correlated. 
& -  

(5) A (  t ) and ( / J  ( t ) arc at least wide scnse station:wy"'. ___ - ~ 

(6) A ( t ) and ~t, ( t ) are statistically independent of , / I ~ )  , the carrier ph:isc. 
This condition exists for most modulation impression techniques, where the 
modulation voltage is impressed on the carrier without regard to a fixed phase 
relation. 

(7) N ( t ) is described by a Gaussian statistical process with zero mean and 
a variance of uN 2. 

5.2 JOINT MOMENTS OF s ( t )  

The statistical properties required for the solution of s ( t )  from Eq. (4-5) 

are the moments of s ( t ), (1) 

and Q, , (7 ). 
S- 

the Gaussian distribution, the nth moment of N ( t ) is found" to be zero for  
n even, and a multiple of the second moment, o N 2 ,  for 11 odd. That is, 

( r ) and the higher order joint moments, (1) 
S"0 s ( i ) 

I3y successive differentiation of the characteristic i'unclion for 

E [ N n ( t ) ]  0 ; I 1  odd 
(5-5) 

- - 1 . 3 * 5 . . . .  ( n  - l )nNn ; n .> 2 even 

The moments of s ( t  ) are expressed as, 

"Even though A ( t )  and ( t ( t )  arc stat ionary,  v ( t )  may not i t s e l f  bc. so. It is n e c e s s a r y  t h a t  tlic 

carrier frequency phase ,  I / J ~ ,  be uniformly distributcd in the primary interval ,  0 to 2 1 1 ,  l o r  v ( t )  
to also be stat ionary.  This condit ion is d i s c u s s e d  by Middliton, ( K I < l .  0, S e c t i o n  I .3-7).  

I l h v e n p o r t  & Root ,  (RI<F. 7, 1'. 1.47). 
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For I v( t ) I > IN( t ) I , the binomial series expansion gives, 

From Eq.  (5-5), 

I 1  ! ( -. E ( 1 1 - l ) !  l !  
I = o  

1 

U 
1=0.2.4 

The joint moments for s ( t )  are similarly expanded as, 

4) (7) E ( s " ( t )  s " ( t  I - , ) }  s"" 

- E { I v ( t )  t N ( t ) l "  I v ( t  t I - )  N ( t  1 , ) 1 " }  

Applying the binomial series to the above expectation value gives, 
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CD ( 7 )  = 
S"" 

The joint mixed moments for s ( t ) are given by, 

Applying the binomial series to the above gives, 

- 0 ' ( 7 )  - 
s nn 

In order to simplify the expressions for the moments oi s ( t  ) somewhnt, 
new running variables will be introduced into the expressions above, Let, 

a n - 1  

y n ' - 1  

42 



The moments of s ( t  ) can then be expressed as, 

and the joint moments as,  

and the joint mixed moments as, 

Q, a8 a! y !  l !  l ' !  v 

- 7, 7, n! n'! 
CD I ( 7 )  - 

S nn 
n#n' 

1 = 0  1'=0 

(5-9) 

(5-10) 

(5- 1) 

The moments, joint moments, and joint mixed moments of s ( t  ) from the 
above equations are listed in Table 5-1 for n and n' out to three. For this 
table, 

E Lv(t)I '- 0 

E [ v " ( t ) ]  ff: 

E [ v ( t )  v ( t  + 7 ) 1  L5 R v ( 7 )  

E [ N ( t ) l  E [ N 3 ( t ) ]  0 

E [ N 2 ( t ) ]  (7N 2 

Also, since both v ( t  ) and N ( t )  are assumed at least wide sense stationary, 
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- .  
5.3 JOINT MOMENTS OF N ( t ) 

The joint moments of N ( t  ) are  most readily obtained by successive differ- 
entiation of the joint characteristic function, as shown by Eq. (2- 16). 

The joint characteristic function is given by Eq. (2-14), 

(5- 13)  

If the pair of random variables x1 and x2 are sample functions 01 a Gaus- 
sian process, as N ( t ) is, the joint characteristic function is given by 1 2 .  

where, 

sccond c e n t r a l  inomciit of x l  

- -  
, 2  = x; - x22 second c c n t r n l  moment of x 2  2 

1 - - P -  E [bl - x 1 )  ( 5  -.,,I c o r r e l a t i o n  c o c x f f  icicbiit 
O 2  

Since N ( t ) is described by a Gaussian process with zero mean and variance 
oz, Eq. (5-14) reduces to, 

(5- 15) 

12Middleton, (REF. 6, p. 337). 
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(1) ( , I  ) 0 

(1) ( f ) 

(0 ( ’1 ) 0 

N lo 

NZn 
0 

N 

N30 

(1, N l 1  ( / ) R N ( f )  

(1) ( / ) ( J  N -f 2 R N 2 ( / )  
N2= 

(P ( 7 )  -- 9 u N 4 % ( , r )  f 6 R N 3 ( 7 )  
N33 

0 

Q, ( T )  - 4) ( 7 )  3 o N 2 R N  ( 7 )  
NU N3 

0 

Table 5-2. The Joint Moments of N ( t )  

Inaddition, since x 1  : ~ ( t )  and x2 - ~ ( t  t I), 

Therefore, from Eq. (5- 12), - 

4G 

(5-16) 



' -  

' . I  The moments, joint moments, and joint mixed moments of N ( t ) are listed 
in Table 5-2 for 1 and 1' out to three. 

5.4 OUTPUT AUTOCORRELATION FUNCTION FOR SIGNAL PLUS NOISE INPUT 

Equations (5-9), (5-lo), and (5-11), which express the statistical moments 
of s ( t ), can now be written as, 

Q, o ( 7 )  = 
S nn 

n f n '  

I -  - 

- -  

The above equation express the joint moments of the input, s( t ) , in terms 
of the joint moments of the signal, v ( t  ) , in the presence of additive Gaussian 
noise with a characteristic function given by M, ( j tf j t5 *) . 

Insertion of the above equations into Eq. (4-5) gives the output autocorrela- 
tion function for the converter in terms of the joint moments of v ( t ). 
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(5-21) 

The 'a' coefficients of Eq. (5-21) are given by, 
m 

p =  1 

All0 11 - 3 - 5 . . . ( 1 1  - 1)1 n !  (J;' 

I X !  I !  
.- __ __ 7, FJ _____._ 

a c c c  , I !  I !  

"1 2 A 0 0  

11-2.4.6.. 1 0 . 2 . 4 .  

AollAll l ,  I 1  . 3 . 5 . . .  ( 1 1  1)1 I I !  ildl 

- -  - 

II  2.4.6.. p 1 I 0.2.4 

AIIO' ( I I !  ) * 
a 3  a !  /I! l !  l ' !  M N  

11=1 p = 1  1 = 0  I"0 

A ( I I ! ) ~  1 I1  p 

"4 - 2 a! /i! l !  l ' !  MN 

" 5  - , I !  y !  l !  l ' !  MN 

" = I  p ' l  I = 0  1 = 0  

Allo AI,, I I !  II' ! 

I1 1 I 1  1 I' 1 1 = 0  1 ' 0  

I 1  # 11' 

I 1  z 11' 
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k 

where, 

The complete solution for R, ( , I  ) requires that the joint moments of ( t ) be 
specified. The following three sections will develop these moments for specific 
input signal voltage waveforms. 
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6. SINUSOIDAL SIGNAL INPUT 

- -  

The first input waveform to be considered consists of a constant amplitude 
cosine wave of the form, 

where @ is uniformly distributed over the primary interval 0 to 2 11. 

The input shown above is a completely deterministric process, since the 
future behavior of the function a t  any time t is available once the phase (1, has 
been specified. 

In this section, the joint moments for the above input will be generated, and 
the output spectrum with and without noise present will be presented. 

6.1 GENERATION OF JOINT MOMENTS 

The nth moment of v ( t ) is given by, 

Q, ( 7 )  E [ v " ( t ) ]  = ACE [cosn ( ~ ' ~ t ]  
V no 

where @ is set equal to zero for convenience. 

The nth power of the cosine function can be expressed as, 

Introducing the binomial expansion, 

Re-arranging the terms to form cosines results in, 
11-2 - 

I 1  ! (6-2) 

f o r  fi p 5 ' l A  

cos ( I 1  - 2y) 0 1 ' .  t , 
n! 

cos" wc t 
( ! I  -- y ) !  y! 

y = o  
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Since the expectation value of a cosine is zero, only the constant term in 
Eq. (6-2) will contribute to (1) n o ( , r  ) . Therefore, 

V 

= o  f o r  n odd 

Similarly, Eq. (6-2) can be applied to the joint moments of v ( t ), which are 
expressed as, 

Therefore, 

For n even: -- 

1 
cos (n - 2y)dc t cos (11 - 2 y ' )  I f ' ( ,  ( t  ' / ) 

n - 2  n - 2  - -  
(n! ) 2 

( n - y ) !  y !  ( I I - Y ' ) !  y ' !  L 
+ A0 

y'0 y ' = 0  

(6-4) For n odd: 

(D ( 7 )  = 
V nn 

n - 1  n - 1  - -  

- _ ~  . c o s  (11 - 2y) < (  , t ( ' O S  ( I 1  - 2yl) (,1,.(1 ' I) 
A0 (11-y)! y !  (11-y')!  y ' !  
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All other terms will vanish, since they are expectation values of the product 
of two cosine functions of different frequencies, (see Eq. (2-25)). Replacing the 
terms above with their expectation values wi l l  give, 

For E even: 
11- 2 - 

cos ( 1 1  - 2y ) ' l ) % .  I 

2n 

11 - y)! y! @ ( 7 )  
V nn 

y ' 0  

For n odd: -- n -  1 - 
(6-5) 

1 
y = o  

The joint mixed moments for v ( t ) can be generated in the same manner. 
These moments are given by 

(P I ( , I )  - E COS'' t COS" ( I ) , .  ( t 1 " nn 
n t n '  

Applying Eq. (6-2) to the above, four sets of non-vanishing terms are generated. 

For n and n' even: 

11-2 11'-2 

I I  ! 11' ! ____ ~- _ _  
( n + r < - 1 )  7 2: 

t -  cos ( I 1  - 2y)  I C '  I 2 (11 - y ) !  y !  (11'-  y ' ) !  y ' !  
y - 0  y ' - 0  
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Table 6 -  1. Joint Moments of Cosine Wave 
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For n and n' odd, o r  i i  even and n' odd, o r  11 odd and 11' even: ~ 

~ 

where, 
(G-6) 

@) 

~ Y n - 2/2 ( f o r  n even) - n - 1/2 ( f o r  n odd) 

Only terms where ( n  - n' ) 2 (y - y' ) can exist in Eq. (6-6) (b), because 
all others are cross-correlations of cosine functions of different frequency. 

Table 6-1 lists the moments of v ( t  ) for II and 11' out to three. All  joint 
mixed moments whose sum 11 4 11' is odd do not exist, hence only those moments 
for which n + n' is even need be considered in Eq.'s (6-5) and (6-6). 

6.2 OUTPUT SPECTRUM FOR COSINE INPUT 

The output autocorrelation function for the frequency converter with a 
cosine input can be found by inserting the joint moments of Eq.'s (6-3), (6-5), 
and (6-6) into Q. (4-5). 

Eq. (4-5) is shown below for n and n' out to three. 

I 1 
R, ( 7 )  = Aoo2 t 2 [AOl2 C O S  mor t A,: cos 2m0 r f C O S  3 , ,  T 

. -  
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Utilizing the values of Table 6-1, Eq. (6-7) will  be, 

1 
+ A3,2R ( 7 )  t - A cos p'l~O'r Rv3 ( , r )  

2 3 P  

1 3 
+ [I A:p + 4 A32p tr: + 3Alp A3p crV2] cos pC,io'r  Rv ( 7  ) 

where P is summed from 1 to 3. 

The power spectral density at the converter output is obtained from the 
Fourier transform of each term in Kq.  (6-8). The transforms of the product 
terms, as shown in Section 2.5, are determined L'rom thc convolution, 

56 



i 
The contributions of each term of KO ( 7 )  to the output spectrum are shown 

in Figure 6-1, where the constant coefficients are given by, 

1 
B, = [Am2 t 2A,A2, 0: + Am2 C J ; ]  I - -  

B,, - [A,: +yA3: ( .~ - ,4  3 + 6A,,A,,o:] 

(6-9) 

The complete output spectrum expressed in terms of the 'A' coefficients of 
the diode can now be found by utilizing Figures (2-2) and (2-3) to obtain the 
spectral component amplitudes. Then, 

1 1 
S , ( f )  = [n, +-p:Am2 b; ( f  k o )  

+ [&A$A2:] b ( f  t 2 f c )  (G- 10) 
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Boo  0 

f 0  3 f 0  

+ Aa2 R: ( 7 )  

+ Am2 R: ( 7 ) 

0 2 f c  

Note: Amplitudes of spectral components not drawn to scale. 

Figure 6-1. Spectral Contributions of the Components of Ro(,/) for a Single Carrier Input 
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' -  

(6-10) 
contd 

The relative magnitudes of the spectral components of SO ( f ) can be ob- 
served by utilizing the 'A' coefficients listed in Appendix 11, Figure 11-4, for 
the 1N53C diode. The output components of so ( f )  for this diode are  displayed 
in Figure 6-2, where E, is 0 .25~ and A, is 0.01~. The m,agnitude of the spectral 
components is plotted in db, with the zero db reference set at the f level at the 
input to the converter. 

The conversion loss of the converter for fundamental mixing is 7.2 db. The 
output filtering requirements will be primarily dictated by the local oscillatol* 
spike at f ,, which is f 
above the desired output frequency level. 

cps away from the desired output frequency and 23 db 
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- -  

6.3 OUTPUT SPECTRUM FOR COSINE PLUS NOISE INPUT 

The output autocorrelation function for  the frequency converter with a signal 
plus noise input is shown as Eq. (5-21). Insertion of the moments of Eq.'s ( G - : ) ) ,  
(6-5), and (6-6) into that equation results in the output autocorrelation function 
for a cosine plus narrowband noise input. 

The non-vanishing moments of the cosine plus noise input for II and 11' out 
to three are listed in Table 6-2 as a function of I v 2 ,  RV ( / ) , 1 2 ,  and R, ( / ). 
These moments were obtained by applying the joint moments of Table's 6 - 1  md 
5-2 to the expressions listed in Table 5-1 for thc signal plus noisc condition, 

The complete output autocorrelation function for the converter for I I  and 
n' out to three is shown below: 

1 
2 2 P  + Am2 RV2(7)  + - A  C O S P W ~ ~  RV2(7)  

1 
+ R v 3 ( 7 )  + - A  2 3 P  COS p c l ~ ~ 7  R V 3 ( 7 )  

(6- 11) 
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(6-1 I )  
cont'd 

-t [18A302 + 9A,2p cos pu07] Rv ( , r )  RN2 ( . r )  

A comparison of the above equation with Eq. (6-8) shows that the presence 
of the narrowband noise has altered the amplitude of the iirst order terms, (i.c., 
dc, C O S  ( ' ~ ~ 7 ,  R v  ( 7 ) ,  and cos ptr~~'r RV ( v  ) ), but has left unchangcd thc SccOt~d m d  
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third order signal terms, RV2 (7), R: (7 ), etc.). In addition, n complete sct of 
noise-only terms has been generated which are similar in foriii to the sign31 
terms. Mixed third order terms, involving both RV ( I ) mid R, ( I ) :II-P :lIso 
present. 

The output power spectrum for the converter with a cosine plus noise input 
can be obtained from the Fourier transform of each term in Eq. (6-11). The 
positive frequency spectral contributions of each term of R, ( r ) are displayed 
in Figure 6-3. The coefficients are given by, 

-. 

0 :  

The Fourier transform of the terms of R, ( 7 )  that involve the product of 
% (7) with itself or with COS pw0 T can be expressed as S, ( f ) displaced by 
rt p f  , , i.e., SN ( f f pf ,). This can be shown by the following: 

- 
F [ C O S P W ~ ~ ~ ( T ) ]  - F [ c o s p w , ~ ]  * S , ( f )  

1 
2 = --ti ( f  f p f , )  * S N ( f )  

1 
= p, ( f  f P f , )  
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4 snn' (7) E ( S l ' ( t ) S " * ( t  + T ) )  

@93(7) R , 3 ( 7 )  f 6 R N 3 ( 7 )  + 9 R v 2 ( , ~ ) R N ( , ~ )  + 1 8 R v ( p r ) R N 2 ( . r )  

1 
0"' - 2 A c 2  

1 
R v ( 7 )  y A c 2  cos ( J J ~ I  

Table 6-2. Joint Moments of Cosine Plus Narrowband Noise 
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I - -  

- .  

t 2 f O  3f0 

f I C  

n 
f C 

f 

d 
f c  3 f c  

+ 18Am2 RV(7 )  R t ( 7 )  

+ 2Atp COS p0j07 RV(-r ) RJ-1)  

+- A ' cos px07 R:(-r) R , ( T )  

+ 9A:p cos pwo 7 R V ( 7 )  R:(7) 

9 
2 3 P  

Note: Amplitudes of spectral components not drawn to scale. 

Figure 6-3. Spectral Contributions of the Components of Ro(  , r - )  
for o Carrier Plus Narrowband Noise Input 
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L 

[ c  

Similarly, 

1 
2 - b ( f  + p f , )  * S , ( f )  * S , ( f )  F [cos pm07 R: ( T ) ]  

1 
- 1 s, ( f  t- p f , )  * s, ( f  t p f , )  

1 3 
2 ,  R$(T)]  ~- - S  ( f  k p f , )  * S, ( f  +_ p f , )  

1 
F [R, ( , r )  R ~ P ) ]  4 Ac2 b ( f  J f , )  * S , ( f )  

1 7 Ac2 'N ( f  ' f c )  

1 
F [ R , ( T )  R:(T)] = 7 Ac2 S, (f k f , )  * S, ( f  +_ f , )  

1 
- - A c 2  8 S, ( f  t. p f ,  f f c )  F [cos p u o ~ R v ( 7 )  R , (T) ]  

1 1 
F [ c o s p w o ~ R ~ ( - r ) R N ( - r ) ]  7 A C 2  S, ( f  -f p f , )  f Ac2 S ,  ( f  1 p f , ,  I 2 f , . )  

1 
F [cos P L J ~ ~ R , ( T ) R : ( ~ ) ]  8 Ac2 S ,  ( f  k p f ,  +_ f , )  * S ,  ( f  I pf , ,  I f c . )  
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The amplitudes and form of the above spectra can be obtained from the 
figures of Section 2.5. All of the resulting spectra above involve S, ( f ) or a 
self-convolution of S, ( f ) centered about a particular frequency, therefore the 
results of Section 2.5 are applicable to the solution of So ( f ). 

The complete output spectrum for the frequency converter, expressed in 
terms of the Aw coefficients of the diode, can now be found by utilizing the 
above convolutions in Eq. (6-11). The resulting spectral density is, 

S o ( f )  = [B,.+gA:Am2] 1 b ( f  - 0 )  

1 
t- 3 A 6 A  2 ]  h ( f  + f , )  ' [QA,2B10' 64 0 30 
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1 3 
+ - A  2 :p ( f  ' pfO) * 'N ( f  ' p f 0 )  

+ ~ ~ 2 ~ ~ 2  s, ( f  f f , )  

9 +T A ~ ~ A ~ ~ ~  s, ( f  f 2 f , )  

9 
2 + -  ~ ~ 2 ~ ~ 2  s, ( f  f f , )  * s, ( f  +_ f , )  

1 
+ ~ A , * A ; ~  s, ( f  _t P f o  1 f , )  

9 
16 + - Ac2A3',, S ,  ( f  f p f ,  I 2 f r )  

68 

(G- 13) 
contd 



(s- 13) 9 
' R A ~ ~ A : ~  S, ( f  f p f ,  + fc) * S ,  ( f  * p f ,  f f , )  contd 

_, 

6.3.1 OUTPUT SIGNAL TO NOISE RATIO 

The terms of R, ( I ) that will contribute noise power near one of the desired 
output frequencies, say at f ,  - fc, can be seen from Figure 6-3 to be, 

TA,; 9 cos wo'r R v 2 ( 7 )  % ( . I )  

9A,? cos mor RV ( 7  ) G2 ( r )  

The mean square value of the noise power near f ,  - fc, No, is the sum of 
the mean square values of the power that portion of the spectrum of each term 
above which falls near f ,  - fc. That is, 

where each bracketed value above corresponds to the total power of the contrib- 
uting term and the multiplying fraction is that part of the spectrum which is 
near f ,  - fc. Therefore 
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The signal power at  f , - f , S o ,  can be found in a similar manner, 

The signal to noise power ratio at  f ,  - f is therefore 

1 p1f ( 1) ' 3 A,: (7" 1- 
(6- 15) 3 

N [ l o l l  ( 1 )  i 7 Ai: (u: 9(lV2 o N 2  I (I:)] 

Since the input signal to noise power ratio is given by 

The ref ore 

The above equation relates the output signal to noise ratio of the convcrter 
to the input signal to noise ratio, in terms of the diode constants and the m e m  
square values of the input signal and noise: 
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7. AMPLITUDE MODULATED SIGNAL INPUT 

I -  

N ' .  

This section will consider a converter input of a cosine carrier with a 
modulating envelope of the form 

where: a is the modulation index, and 

A ( t )  isthemodulatingvoltage,w&h I a A ( t ) l  < 1 , so tha tno  
overmodulation occurs. 

The modulating voltage, A( t ), is assumed to possess a rectangular Gaussian 
spectrum centered at zero frequency and &eying the conditions listed in Section 
5.1. Such a spectrum is a reasonable model to assume for the representation 
of many types of complex waveform spectra such as those of voice, television, 
frequency division multiplex telephony and other communication signals 13. 

7.1 AUTOCORRELATION FUNCTION OF AM WAVE 

The autocorrelation function of v ( t  
i 

is obtained from Eq. (2-30) as 

where RV (7) is the autocorrelation function of V ( t ) I 1 + a A ( t )1.  

The power spectral density is then 

A: 
Sv(f)All = 7 S v ( f )  * s ( f  k f c )  

where Sv ( f ) is the power spectral density of V ( t ). 

(7-3) 

U A b a m s o n ,  (REF. 1, p. 407), and Stewart, (REF. 13, p. 1537). 

71 



For 

- 0 ;  

then 

and 

S , ( f )  -: b ( f  - 0 )  I 2 S A ( f )  (7-4 

(7-5) 

This spectrum is identical in iorm to that of a cosine as 1'. plus n:irrowb:tnd 
noise, N ( t ), centered at I f ,. and - f c ,  Le., v ( t ) A M  can be expressed :is 

(7-6) 

7.2 CONVERTER OUTPUT SPECTRUM FOR AM INPUT 

The spectrum of v ( t  )AM, as given by EQ. (7-6), is precisely the input 
spectrum considered in Section 6.3, except for the multiplying factor on N ( t  ). 
The results of that section may therefore be utilized to obtain the output auto- 
correlation function and power spectral density of the converter. 

The joint moments of v ( t ) A M  will be given by Table 6-2 with the following 
sub s t  itutions , 

(7-7) 
1 

N 2 :i2 ;io I ,  AO2 2 - 0 
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With the above substitutions, the converter output autocorrelation function 
for a carrier amplitude-modulated by narrowband Gaussian noise input is given 
by Eq. (6-11). The complete output power spectrum for the frequency converter 
is given by Eq. (6-13), with S, ( f ) replacy by the modulating voltage of the AM 
wave, S , ( f ) .  

i 

- .  
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8. ANGLE MODULATED SIGNAL INPUT 

In this section the input to the converter will be taken as a cosine wave which 
is phase or frequency modulated by a rectangular Gaussian spectrum centered at 
zero frequency and obeying the conditions listed in Section 5.1. The modulated 
signal can be expressed as 

where q5 ( t ) is the instantaneous phase-angle shift created by the modulating 
voltage. For phase modulation, PM, the information, x ( t ), is directly propor- 
tional to &( t ), i.e,, 

For frequency modulation, FM, the information is proportional to the in- 
stantaneous frequency. The only essential difference between the spectrum of 
the PM and the FM wave is a factor of u2 . The PM spectrum resulting from a 
modulating spectrum of Sv ( W )  is identic4 to the spectrum resulting from FM 
with a modulating spectrum of w2 Sv ( w )  M. 

8.1 AUTOCORRELATION FUNCTION OF +M WAVE 

The autocorrelation function of v ( t )&,, is given by 

From Eq, (2-30), this is seen to be 

The expectation value in Eq. (8-2) is 

(8-3) 

Y)Stewart, (KEF. 13, p. 1540). 
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where 

Comparing this expectation value with the joint characteristic function ex- 
pression, Eq. (2-14), it is seen to be the particular characteristic function with 
f 1  = 1 and 4 ,  - -1, i.e., 

(8-4) 

Therefore, Eq. (8-2) can be written as 

Since ( / J  ( t ) is described by a Gaussian random process with zero mean and 
variance o + ~ ,  its joint characteristic function is, from Hq. (5-15), 

Therefore 

8.2 POWER SPECTRUM OF 4M WAVE FOR o h 2  << 1 

* _  

The determination of the angle-modulated carrier spectrum from, Eq. (8-7) 
requires the Fourier transform of eR4(7) , which, in general, is quite difficult 
to obtain. For u42 << 1, however, it is well known that the spectrum of the 
angle modulated wave is similar to that of an amplitude modulated wave with thc 
same modulating voltage . 

'Abramson, (REF. 1, p. 411), Middleton, (KEF. 6, p. 617) or Schwartz, (REF. 11, p. 118). 
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This can be shown easily by expanding the exponentials of 4. (8-7), 

. -  

r 

Therefore 

- -A: -A02 
S V ( f ) + ,  - - 4 6 ( f  * f c )  +4 S & ( f )  * 6 ( f  +_ fc) 

or 

Comparing this with Eq. (7-5) gives the expected result that the spectrum 
of a narrowband 4 M  carrier is similar to the spectrum of an AM carrier with 
the same modulating voltage. 

8.3 CONVERTER OUTPUT SPECTRUM FOR +M INPUT 

As done previously for the AM case in Section 7.2, the results of Section 6.3 
can be utilized to obtain the output autocorrelation function and power spectral 
density of the converter. 

The joint moments of v ( t )&,, are given by the values of Table 6-2, with the 
following substitutions, 

(8- 10) 
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(8-11) 

Utilizing the above substitutions, the converter output autocorrelation 
function for a narrowband 4M carrier input is given by Eq. (6-11). The complete 
output spectrum for the converter is given by Eq. (6-13), with S ,  ( f ) replaced 
by the modulating spectrum of the +M wave, S+ ( f ). 

4 
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9. CONCLUSIONS 

The output power spectral density of a diode frequency converter subjected 
to mixed statistical inputs has been derived by an application of the Wiener- 
Khintchine Theorem to the autocorrelation function of the diode output current. 
The series representation of the diode current is given by E q .  (3-17) and the 
complete output autocorrelation function is given by Eq. (4-5). The latter 
equation is useful for any input signal for which the statistical moments are 
known. 

The output autocorrelation function for a signal plus additive noise input, 
again expressed in terms of the signal moments, is given by Eq. (5-21). The 
output spectrum for a cosine input is given by 4. (6-10) and is displayed in 
Figure 6-2 for the 1N53C diode. The output spectrum for a cosine plus narrow- 
band noise input is given by Eq. (6-13), with the output signal-to-noise ratio 
given by Eq. (6-16). Sections 7 and 8 indicate the resulting spectra for an 
amplitude and an angle modulated signal plus noise input, respectively. 

All of the autocorrelation and power spectra functions developed in this 
paper are expressed in series form and in terms of the diode conductance con- 
stants. This was done to permit a useful analysis of the contributions of each 
term and to indicate the significance of the diode constants to the resulting 
power spectra. From a display of the spectral contributions of the autocomela- 
tion function, such a s  Figures (6-1) and (6-2), the terms producing undesired 
output noise and the diode terms affecting these terms are evident. 

From these results, the optimum diode characteristic for efficient frequency 
conversion can be generated and the filtering and power requirements of the 
converter determined. 

- u  
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APPENDIX I 

SPREADING RESISTANCE EFFECT ON CONDUCTANCE CONSTANTS 

The current through the variable resistance diode with a spreading resist- 
ance of rs was shown in Section 3.0 to be, 

where v and Rs are as shown in Figure 3-1. 

Re-arranging terms, 

Since, 

x2 x3 x4 
l n ( l + x )  = x - - - t - - -  + ... 1x1 < 1 2 3 4  

therefore Eq. (I-2) can be expressed as, 

Dividing by a R s  gives, 

1 
‘d’ 

Re-arranging terms and letting - - 
I O  
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Expanding, 

i g l v  t g 2 v 2  + g 3 v 3  4 .... 

1 From Eq.'s (I-5) and (I-7), 

Substituting the above series for the current into Eq. 0-3) and equating like 
powers of v gives, 

- 1 - R l ( ?  + 1) 

Rs 
0-4) 

(1-5) 

0 = g, (? + 1) - 2 g , g ,  (+-) + g,3 ( 3 I O 2 R s  f d  ) 
From Eq. &4), 

f rl  
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. -  

From 4 0 ' s  Q-6), (I-7), and (1[-8), 

(I-9) 

Using the same method of equating like powers in Eq, (I-3), the remaining 
conductance constants can be determined as required. 

c 
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APPENDIX II 

IN53 DIODE CHARACTERISTICS 

In this appendix the diode parameters necessary for the frequence converter 
analysis will be determined from measurements on a representative microwave 
diode. The diode chosen for study was 
produced by Sylvania Electric Products, Inc. It is a point contact silicon diode 
in a miniature coaxial type package, and is designed for use as a first detector 
in Ka-band microwave superheterodyne receivers. The electrical character- 
istics, taken from the manufacturers engineering data sheet, are listed in 
Figure 11-1. 

1N53C K,-band microwave mixer, 

The forward and reverse characteristics of four sample diodes were ob- 
tained on a Tektnwix Type 575 Transistor-Curve Tracer, and from the four 
resulting curves a representative forward characteristic was plotted. This 
curve is shown as the solid line of Figure II-2. 

Various values d u and Rs were assumed to obtain a 'best fit' curve for 
Eq. 0-1). I, was determined by an exact f i t  of the curve at the operating poM 
chosen at 

Va - 0 . 2 5 ~ ,  I n  0.48 m a  

and by utilizing the relation, 

Several of the calculated curves are shown in Figure II-2. The curve that 
resulted in the best f i t  around the operating point, Eo three significant figures, 
had the values, 

Rs . 25 dvns 
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DYNAMIC CHARACTERISTICS AT 25 C 

Conversion Loss, Lc , in db .................................. 

Noise Ration, N ........................................................ 

IF Impedance, 2, , in ohms ................................ 

RF Impedance, Zr f ,  as VSWR 

@ 34,860 Mc .................................................... 

@ 32,770 Mc .................................................... 

@ 36,950 Mc .................................................... 

Overall Noise Figure, NF, in db ...................... 

TEST CONDITIONS: 

For Lc: f = 34,860 M c  

P z- 1.0 mw 

R,* 100 ohms 

Zm - -  500 ohms 

For N r :  f = 9,375 M c  

P/I = 0.5 ma dc (min) 

R, = 100 ohms 

R, = 300 ohms 

For ZIF: 

For ZrI: 

For NF : 

Max. 

6.5 

2.0 

4 

800 

1.6 

2.5 

2.5 

9.0 

f = 34,860 Mc 

P/I = 0.5 ma dc 

p/I - 0.5 ma clc 

R ,  - 100 ohms 

NF = Lc (NIF + Nr - 1) 

NIF = 1.5 db 

Figure 11- 1. Electrical Characteristics of IN53C Diode 
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C .- . 
e( 

2 2  C 

6 
P) 
L b. 

1 

0 
0 0.1 0.2 0.3 0.4 0.5 

Voltage, V, in volts 

Figure 11- 2. 1N5X Current-voltage Characteristics 

. 
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Since rd .> Rs, negligible e r ro r  will be introduced by neglecting R and 
utilizing Eq. (3-5) to determine g l ,  g , ,  etc., instead of Eq.'s (I-7), @-a), and 
(I-9). The first  six conductance constants for the 1N53C diode, along with the 
other important constants for  the diode, are summarized in Figure 11-3. 

The 'A' coefficients for the diode, and their squares, are shown in Figure 
11-4. They were determined from Ea. (3-16), with the local oscillator voltage 
amplitude, E,, set  equal to 0.25 volts. 

EXPONENTIAL REPRESENTATION 

I, = 0.932 10-,a 

POWER SERIES REPRESENTATION 

W 
1 

g, in  

go = 0 

g1 - 1.48 10-4 

g4 - 2.46 x low2 

g, = 8.60 x lo-, 

g, 2.30 x lo-' 

Figure 11- 3. Experimentally Determined Constants for the IN53C Diode 
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A, :- 0.0369 ma 

A,, = 0.109 ma 

0.0369 ma 

A, = 0.012 ma 

A, = 0.436 ma/v 

A, 5.79 ma/v2 

A, = 19.6 ma/v3 

A l l  = 1.74 ma/v 

A,, 0.578 ma/v 

A, 0.192 ma/v 

A,, = 11.6 ma/v 

A, = 4.62 ma/v2 

A, = 1.68 ma/v2 

A,, = 78.6 ma/v 

A,, = 26.9 ma/v3 

A, = 8.9 ma/v 

A'm 0.00136 

z. 0.0119 

= 0.00136 

A f 2 0.000144 

A,,, = 0.19 

A2, = 33.5 

A23Q = 384.0 
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Figure 11-4. 'A' Coefficients for the IN5X Diode, with E, '- 0.25 Volts 
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